Tests of the motor neuron model of the local pattern-generating circuits in the swimmeret system.

نویسندگان

  • C M Sherff
  • B Mulloney
چکیده

The motor pattern that drives each crayfish swimmeret consists of alternating bursts of impulses in power-stroke (PS) and return-stroke (RS) motor neurons. A model of the neural circuit that generates this pattern focused on connections between motor neurons themselves (Heitler, 1978, 1981). The model predicts that synergist motor neurons are electrically coupled, whereas antagonists make mostly inhibitory synapses. We tested this model by observing the responses of motor neurons to pressure ejection of GABA and glutamate, transmitters that crayfish motor neurons release at neuromuscular junctions, and by measuring the strengths and delays of synapses between pairs of motor neurons. Both GABA and glutamate inhibited motor neurons. This inhibition persisted when synaptic transmitter release was blocked by high Mg2+. The effects of GABA were mimicked by muscimol, but not by baclofen or the GABAc receptor agonist cis-4-aminocrotonic acid, and they were not blocked by bicuculline. The effects of glutamate were mimicked by ibotenic acid. Picrotoxin partially blocked glutamate's inhibition of the motor pattern, but did not affect GABA responses. Most (87%) pairs of synergist motor neurons tested made weak, noninverting connections. Approximately half of these had synaptic delays of <2 msec, consistent with direct electrical or chemical synapses. Individual motor neurons were dye-coupled to between one and three other motor neurons, and to interneurons. Less than half (44%) of the pairs of antagonist motor neurons tested made synaptic connections. These connections were weak, had long latencies (>4 msec), and therefore were probably polysynaptic. We conclude that direct synapses between swimmeret motor neurons cannot account for alternation of PS and RS bursts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Five types of nonspiking interneurons in local pattern-generating circuits of the crayfish swimmeret system.

We conducted a quantitative analysis of the different nonspiking interneurons in the local pattern-generating circuits of the crayfish swimmeret system. Within each local circuit, these interneurons control the firing of the power-stroke and return-stroke motor neurons that drive swimmeret movements. Fifty-four of these interneurons were identified during physiological experiments with sharp mi...

متن کامل

The beat goes on, and up and down. Focus on "bursts of information: coordinating interneurons encode multiple parameters of a periodic motor pattern".

The effective production of many motor behaviors requires the strict coordination of discrete motor pattern generating circuits (Hill et al. 2003). Locomotor behaviors usually require this coordination at several levels of the nervous system, within single limbs (interjoint coordination), across multiple limbs (intersegmental coordination), and between multiple central pattern generator (CPG) c...

متن کامل

Intersegmental coordination of limb movements during locomotion: mathematical models predict circuits that drive swimmeret beating.

Normal locomotion in arthropods and vertebrates is a complex behavior, and the neural mechanisms that coordinate their limbs during locomotion at different speeds are unknown. The neural modules that drive cyclic movements of swimmerets respond to changes in excitation by changing the period of the motor pattern. As period changes, however, both intersegmental phase differences and the relative...

متن کامل

Modulation of force during locomotion: differential action of crustacean cardioactive peptide on power-stroke and return- stroke motor neurons.

Crustacean cardioactive peptide (CCAP) elicited expression of the motor pattern that drives coordinated swimmeret beating in crayfish and modulated this pattern in a dose-dependent manner. In each ganglion that innervates swimmerets, neurons with CCAP-like immunoreactivity sent processes to the lateral neuropils, which contain branches of swimmeret motor neurons and the local pattern-generating...

متن کامل

Coordination of cellular pattern-generating circuits that control limb movements: the sources of stable differences in intersegmental phases.

Neuronal mechanisms in nervous systems that keep intersegmental phase lags the same at different frequencies are not well understood. We investigated biophysical mechanisms that permit local pattern-generating circuits in neighboring segments to maintain stable phase differences. We use a modified version of an existing model of the crayfish swimmeret system that is based on three known coordin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 8  شماره 

صفحات  -

تاریخ انتشار 1996